92 research outputs found

    Simulation of Congenital Heart Defect Corrective Surgeries Using Thin Shell Elements

    Get PDF
    International audienceCongenital heart defect (CHD) corrective interventions in infants are extremely challenging due to commonly complex and heterogeneous disease pat-terns. At present, cardiac surgeons can only rely on non-invasive imaging prior to surgery. Critical decisions regarding the surgical procedure of choice and its exe-cution must be made during the actual surgery and are strongly dependent on ex-perience. We want to improve surgery planning by providing a simulation system that is able to accurately predict patient-specific results for different surgical pro-cedures preoperatively. Therefore we use a sophisticated simulation model based on thin shell elements. We present a novel joining approach that allows for im-plementing all necessary surgical low-level procedures, e.g. incising and suturing, independent from the simulation model. No modifications are necessary for al-ready approved thin shell implementations and our simulation system can instan-taneously benefit from further improved simulation models in the future. By re-ducing computationally expensive simulations to a minimum during a virtual surgery we can achieve a fluent workflow for surgeons. However, a specialized mesh resampling algorithm is required to fully utilize our simulation system

    Does preoperative analysis of intrahepatic venous anastomoses improve the surgeon's intraoperative decision making? Pilot data from a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Three-dimensional (3D) visualization is thought to improve the anatomical understanding of clinicians, thus improving patient safety.</p> <p>Case presentation</p> <p>A 58-year-old male was admitted to our hospital in April 2007 with a suspected metastasis of a sigmoid cancer in the Couinaud segment (CS) 7. The anatomical situation of this patient was analyzed using both a CT scan and 3D images. The initial CT scan revealed that the proximal part of the middle hepatic vein was completely missing and the metastasis in the CS 7 was closely attached to the right hepatic vein. After analyzing additional 3D images, it became clear that due to the close proximity of metastasis and right hepatic vein, the resection of the right hepatic vein was inevitable. Based on this 3D analysis, it was decided to perform a right-sided hemihepatectomy. In this case report, 3D visualization resulted in a faster and clearer understanding of the unique anatomical situation in a patient with complicated liver anatomy than transversal CT images.</p> <p>Conclusion</p> <p>The here presented data shows for the first time 3D visualization of intravenous anastomoses in the human liver. The information offered by 3D visualization is not redundant but rather serves as a true source of additional information, indicating the potential benefit of 3D visualization in surgical operation planning.</p

    The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx)

    Get PDF
    1. Climate change is a world‐wide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soil–plant–atmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and high‐quality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis and upscaling. Many of these challenges relate to a lack of an established ‘best practice’ for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change. 2. To overcome these challenges, we collected best‐practice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data re‐use and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data re‐use, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate second‐order research outputs and create opportunities for collaboration across scientific communities. Ultimately, this should significantly improve the quality and impact of the science, which is required to fulfil society's needs in a changing world
    corecore